THE IMPACT OF MANAGING ELECTRONIC WASTE TO ENSURE GREEN COMPUTING (ENVIRONMENTAL SCIENCE PROJECT TOPICS AND MATERIALS)
CHAPTER ONE
INTRODUCTION
In this era of information and communication technology, the use of electronics and computational resources has grown exponentially. Excessive use of electronics equipments has given rise to a number of adversaries such as high energy 418 Ranjita Panda consumption, global warming, accumulation of e-wastes, environmental pollution etc. Faced with the sever realities of global warming and rising energy costs, government agencies and private firms worldwide have started examining ways to protect the environment. To address these issues, there is a growing global movement to implement more environmental friendly computing.
Green Computing
Green computing can be defined as the efficient use of computing resources. It is the name attached to the movement which represents an environmentally responsible way of computing through reduced power consumption. It is also associated with the proper use of computing resources and plays a prime role in minimizing their hazardous impact on environment. Two major issues associated with green computing are: reduction in energy consumption and pollution control. While the former can be achieved by proper use of electronic good and through development of energy efficient and less power consuming hardware, the later can be achieved through their reduced use, proper recycling policies and use of less toxic substances in manufacturing the equipments. Maximizing economic viability and ensuring sustainability are among the other aspects of green computing. Out of these above stated aspects of green computing, in this paper, we are focusing on issues related to waste management and recycling.
Waste Management Any substance that is discarded is known as waste. It is a valuable raw material located at a wrong place. Many of the wastes, at present used in uneconomic manner or left completely unutilised, are causing great hazards to human environment. It can be converted into useful product by making use of appropriate processing technology. These wastes are of various types and can be categorized as hazardous and nonhazardous. These can be further subdivided into municipal wastes, electronic wastes, bio-medical wastes and Industrial wastes. Many studies have been carried out in various parts of the world to establish a connection between health and hazardous wastes. Certain chemicals if released untreated, e.g. cyanides, mercury, and polychlorinated biphenyls are highly toxic and exposure to these can lead to disease or death. Some studies have detected excess prevalence of cancer in residents exposed to hazardous waste.
THE IMPACT OF MANAGING ELECTRONIC WASTE TO ENSURE GREEN COMPUTING (ENVIRONMENTAL SCIENCE PROJECT TOPICS AND MATERIALS)