THE EFFECT OF WEIGHT PERCENTAGE OF SILICON CARBIDE ON MECHANICAL BEHAVIOR OF ALUMINUM METAL MATRIX COMPOSITE
CHAPTER ONE
INTRODUCTION
The rapid development in the automobile and aircraft industries requires among other things, the integration of unique materials for design purposes that reduce fuel consumption to preserve the dwindling hydrocarbon resources without compromising other attributes such as safety, performance, recyclability and cost. Similarly, the current trend of materials in car industry is towards replacing metal parts more and more by these unique materials in order to improve the fuel economy and reduce the weight of the vehicles. These categories of unique materials include composite materials which are widely used in aerospace, automotive, electronics and medical industries. Composites are materials in which the desirable properties of separate materials are combined by mechanically or metallurgically binding them together. Each of the components retains its structure and characteristic, but the composite generally possesses better properties. Composite materials offer superior properties to conventional alloys for various applications as they have high strength, low weight, high modulus, low ductility, high wear resistance, high thermal conductivity and low thermal expansion.