THE EFFECT OF INTEGRATION OF PETROPHYSICAL LOG DATA TO QUALIFY AND QUANTIFY RESERVOIRS

4000.00

 THE EFFECT OF INTEGRATION OF PETROPHYSICAL LOG DATA TO QUALIFY AND QUANTIFY RESERVOIRS

 

CHAPTER ONE 

1.1 INTRODUCTION

One very important aspect in exploration geophysics which will complement previous data acquisition is the information from well log data (wireline data), this does not only gives information about the petrophysical properties of the subsurface formation but it is a major tool in linking stratigraphy, delineating reservoir properties of a formation, calibrating seismic data and in correlating lithology where more than one wells are available.

Formation evaluation is the practice of determining both the physical and chemical properties of rocks and the fluids they contain. The objectives of formation evaluation are to evaluate the presence or absence of commercial quantities of hydrocarbons in formations penetrated by the wellbore, to determine the static and dynamic characteristics of productive reservoirs, detect small quantities of hydrocarbon which nevertheless may be very significant from an exploration standpoint, and to provide a comparison of an interval in one well to the correlative interval in another well. It can be performed in several stages such as during drilling by mud logging, logging while drilling, during logging (quick look log interpretation) and after logging (detailed log interpretation), by core analysis in the laboratory, etc. Wireline logs are one of the many different sources of data used in formation evaluation.

Using wireline log data, formation evaluation and petrophysical analysis gives reservoir data that can be used for future reserve estimation and reservoir analysis.

1.3 RESEARCH PURPOSE AND OBJECTIVES

The aim of this study is to integrate petrophysical log data to qualify and quantify reservoirs in order to assess the production potential.

The objective includes;

  • Knowing the lithology through the identification of sand units from chosen top sand to the last hydrocarbon bearing sand, using Gamma Ray Log.
  • Estimation of shale volume and reservoir thickness.
  •   Assessment of effective porosity
  •  Determination of water saturation.
  •  Estimation of log derived permeability.
  • Facies analysis by classifying reservoir sands and their depositional environment from the log motifs.
  • Identification of hydrocarbon and gas-bearing sands and gas/oil contact from density log in combination with the neutron porosity log.

 THE EFFECT OF INTEGRATION OF PETROPHYSICAL LOG DATA TO QUALIFY AND QUANTIFY RESERVOIRS