RELIABILITY ANALYSIS OF REINFORCED CONCRETE BRIDGE DECKS SUBJECT TO FATIGUE
CHAPTER ONE
INTRODUCTION
1.1 Preamble
Researches on fatigue behaviour of concrete materials started at the end of the 19th century, due to failure in many concrete structures caused by fatigue rupture of the concrete (Rteil et.al, 2011). Results of experimental and theoretical studies of the fatigue properties of plain concrete, reinforcing bars, prestressing tendons, and also of structural concrete members, have been accumulating steadily over the past thirty years.
The assessment of existing structures will become a more frequent task for engineers in the near future due to the increasing age of existing infrastructure. These may be due to reasons such as(Jansen, 1996); Change in intended use of the structure, new regulations with higher load requirements for the structure, indications of ongoing deterioration in the structure, unusual incidents during use (e.g. vehicle impact, fire, earthquakes), inadequate serviceability, discovery of design or construction errors.
The purpose of reliability analysis in this research is to verify the overall stability and establishment of action effects, i.e. the distribution of internal forces and moments. In turn, this will enable the calculation of stresses, strains, curvature, rotation and displacements. In certain complex structures, the type of analysis used (e.g. finite-element analysis) will yield internal stresses and strains and displacements directly.