RAINFALL DATA GENERATION FOR SAMARU, ZARIA USING STATISTICAL PARAMETERS
CHAPTER ONE
INTRODUCTION
1.1 Background of the Study
Synthetically generated daily or monthly rainfall data are frequently necessary in data scarce environments as input into the planning and design of water resources and soil conservation projects; simulation studies of crop growth and yield; farming systems and field farm operations scheduling ( Jamaludin and Jemain 2017). Rainfall is the principal phenomenon driving many hydrological extremes such as floods, droughts, landslides, debris and mud-flows; its analysis and modelling are typical problems in applied hydrometeorology. Rainfall exhibits a strong variability in time and space. Hence, its stochastic modeling is not an easy task (De Michele and Bernardara, 2015).
A good understanding of the pattern and distribution of rainfall is important for water resource management of an area. Knowledge of rainfall characteristics, its temporal and spatial distribution play a major role in the design and operation of agricultural systems, telecommunications, runoff control, erosion control, as well as water quality systems. Generated weather is needed to supplement existing weather data, provide alternative weather realizations for a particular historical record, or identify possible weather sequences for a seasonal climate forecast (Walpole and Mayers, 2015).