CHAPTER ONE
1.0 INTRODUCTION
Drilling mud is a flowing fluid applied in rotary drilling for achieving single or multiple tasks during the procedure, and its typically consist of water/oil, clay, weighing compounds and few other chemical additives (American Institute of Petroleum, 1998). It most important physical characteristics are viscosity and water holding/retaining properties (Crowo, 1990). The successful and cost of the drilling process is known to depend extensively on the asset of the drilling fluid used (Gray, et al., 1980). Drilling mud circulates in a loop, from the building platform, where is forced down into the formation system by entering the drill string, and pushed up to the surface again via the drill bit. The fluid characteristics such as density and temperature are variables that need to be regularly monitored for the perfect drilling performance according to the condition of the drilling well (Issham and Ahmad Kamal, 1997; Rabia, 1985).
Drilling fluids are commonly known for their gel or thixotropic characteristics, in which they can go through a reversible transformation from high to low viscosity status when being subjected to shear stress force (Dolz et al., 2007). These transformations ruin the microstructure of the but will be gradually recovered when the fluid is in resting condition (Azar and Samuel, 2007).
Usually, the industrial capability of wells is impaired by multifaceted interfaces between rock and fluid, which decrease permeability to oil and gas. For that reason, drilling mud should be continuously formulated to diminish these undesireabe effects (Hamida, Kuru, & Pickard, 2010). Depth, pressure and mechanical/impact resistance of the wellbore are the key parameters that determined which type of the mud is most relevant. Inspite of their differences in categories, that main purposes and functions remain mutual (Barnes et al., 1998). They function to preserve hole reliability, convey the rock cuttings, managing the pressure of the mud system along with lubricating and cooling the drill bit (Baba Hamed and Belhachi; 2009; Brazzel, 2009; Caenn and Chillinger, 1996; Gonzalez et al., 2011). At the current time drilling mud are categorized by their external phase or basic material into five major groups, which are oil based drilling mud (OBM), Synthetic base drilling mud (SBM), Water based drilling mud (WBM), Gas based
drilling mud (GBM) and Nano based drilling mud (Davis et al., 1984; Van Dyke and Baker, 1998).The significant factors for distinguishing the assets of a drilling fluid are gel strength, viscosity(apparent and plastic viscosity), explicit weight, PH, thermal stability and the filtration function (Caenn et al., 2011., Sondona, 1985).
Untreated colloids, basically starch and its modified types, were used in drilling fluid industry for a long time to defeat the hazardous effect of anhydrite and saline on drilling fluids (Civian, 2007; Windarto et al., 2011).Managing the fermentation made by micro-organism in drilling muds, which are composed of gums, starches and tenants additives, is one of the most important problems in drilling mud formation. In an effective stated drilling mud, depending on the PH, Heat, Ventilation group of enzymes get activated which assist microorganisms to fermentation dilemma in starch based drilling muds is generally chanlleged by adding an antiseptic like paraformaldehyde, which is fairly economical (Myers, 1962; Soepenberg et al., 1983). In drilling mud composition different polymer and chemical are used for various applications, this chemicals mostly influence the rheological and fluid loss properties of the mud (Austin, 1983).