DESIGN AND OPERATION OF A SHELL AND TUBE HEAT EXCHANGER
CHAPTER ONE
INTRODUCTION
The most common type of heat exchanger used in industry contains a number of parallel tubes enclosed in a shell and is thus called a shell and tube heat exchanger. These heat exchangers are employed when a process required large quantities of fluid to be heated or cooled. Due to their compact design, these heat exchangers contain a large amount of heat transfer area and also provide a high degree of heat transfer efficiency.
Over the years, many different types of shell and tube heat exchangers, have been designed to meet various process requirements. In the industry today, heat exchangers are most often designed with the aid of software program. Given the required specifications for a heat exchanger, these simulators perform the appropriate calculations.
In this project, we try to use a computer approach in designing a shell and tube heat exchanger. We started by designing an algorithm that covers the chemical engineering design such as the estimation of fluid and material properties, film and overall heat transfer coefficient, exchanger surface, tube layout and pressure drop. It also covers the mechanical engineering design of calculating the shell and channel thickness, shell cover thickness, channel cover thickness e.t.c.
These algorithm was translated unto a program using a micro soft visual basic 6.0, an object oriented computer programming language.
With this program, the computer takes over and automatically per for all the complex computations with little or no human effort and gives an output which is the design information needed.
TERMS AND CONDITIONS
Using our service is LEGAL and IS NOT prohibited by any university/college policies
You are allowed to use the original model papers you will receive in the following ways:
1. As a source for additional understanding of the subject
2. As a source for ideas for your own research (if properly referenced)
3. For PROPER paraphrasing (see your university definition of plagiarism and acceptable paraphrase)
4. Direct citing (if referenced properly)
DESIGN AND OPERATION OF A SHELL AND TUBE HEAT EXCHANGER